You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
146 lines
5.7 KiB
146 lines
5.7 KiB
function [mutM,cummutM,minmuttauV] = MutualInformationHisPro(xV,tauV,bV,flag) |
|
% [mutM,cummutM,minmuttauV] = MutualInformationHisPro(xV,tauV,bV,flag) |
|
% MUTUALINFORMATIONHISPRO computes the mutual information on the time |
|
% series 'xV' for given delays in 'tauV'. The estimation of mutual |
|
% information is based on 'b' partitions of equal probability at each dimension. |
|
% A number of different 'b' can be given in the input vector 'bV'. |
|
% According to a given flag, it can also compute the cumulative mutual |
|
% information for each given lag, as well as the time of the first minimum |
|
% of the mutual information. |
|
% INPUT |
|
% - xV : a vector for the time series |
|
% - tauV : a vector of the delays to be evaluated for |
|
% - bV : a vector of the number of partitions of the histogram-based |
|
% estimate. |
|
% - flag : if 0-> compute only mutual information, |
|
% : if 1-> compute the mutual information, the first minimum of |
|
% mutual information and the cumulative mutual information. |
|
% if 2-> compute (also) the cumulative mutual information |
|
% if 3-> compute (also) the first minimum of mutual information |
|
% OUTPUT |
|
% - mutM : the vector of the mutual information values s for the given |
|
% delays. |
|
% - cummutM : the vector of the cumulative mutual information values for |
|
% the given delays |
|
% - minmuttauV : the time of the first minimum of the mutual information. |
|
%======================================================================== |
|
% <MutualInformationHisPro.m>, v 1.0 2010/02/11 22:09:14 Kugiumtzis & Tsimpiris |
|
% This is part of the MATS-Toolkit http://eeganalysis.web.auth.gr/ |
|
|
|
%======================================================================== |
|
% Copyright (C) 2010 by Dimitris Kugiumtzis and Alkiviadis Tsimpiris |
|
% <dkugiu@gen.auth.gr> |
|
|
|
%======================================================================== |
|
% Version: 1.0 |
|
|
|
% LICENSE: |
|
% This program is free software; you can redistribute it and/or modify |
|
% it under the terms of the GNU General Public License as published by |
|
% the Free Software Foundation; either version 3 of the License, or |
|
% any later version. |
|
% |
|
% This program is distributed in the hope that it will be useful, |
|
% but WITHOUT ANY WARRANTY; without even the implied warranty of |
|
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
% GNU General Public License for more details. |
|
% |
|
% You should have received a copy of the GNU General Public License |
|
% along with this program. If not, see http://www.gnu.org/licenses/>. |
|
|
|
%========================================================================= |
|
% Reference : D. Kugiumtzis and A. Tsimpiris, "Measures of Analysis of Time Series (MATS): |
|
% A Matlab Toolkit for Computation of Multiple Measures on Time Series Data Bases", |
|
% Journal of Statistical Software, in press, 2010 |
|
|
|
% Link : http://eeganalysis.web.auth.gr/ |
|
%========================================================================= |
|
nsam = 1; |
|
n = length(xV); |
|
if nargin==3 |
|
flag = 1; |
|
elseif nargin==2 |
|
flag = 1; |
|
bV = round(sqrt(n/5)); |
|
end |
|
if isempty(bV) |
|
bV = round(sqrt(n/5)); |
|
end |
|
bV(bV==0)=round(sqrt(n/5)); |
|
tauV = sort(tauV); |
|
ntau = length(tauV); |
|
taumax = tauV(end); |
|
nb = length(bV); |
|
[oxV,ixV]=sort(xV); |
|
[tmpV,ioxV]=sort(ixV); |
|
switch flag |
|
case 0 |
|
% Compute only the mutual information for the given lags |
|
mutM = NaN*ones(ntau,nb); |
|
for ib=1:nb |
|
b = bV(ib); |
|
if n<2*b |
|
break; |
|
end |
|
mutM(:,ib)=mutinfHisPro(xV,tauV,b,ioxV,ixV); |
|
end % for ib |
|
cummutM=[]; |
|
minmuttauV=[]; |
|
case 1 |
|
% Compute the mutual information for all lags up to the |
|
% largest given lag, then compute the lag of the first minimum of |
|
% mutual information and the cumulative mutual information for the |
|
% given lags. |
|
mutM = NaN*ones(ntau,nb); |
|
cummutM = NaN*ones(ntau,nb); |
|
minmuttauV = NaN*ones(nb,1); |
|
miM = NaN*ones(taumax+1,nb); |
|
for ib=1:nb |
|
b = bV(ib); |
|
if n<2*b |
|
break; |
|
end |
|
miM(:,ib)=mutinfHisPro(xV,[0:taumax]',b,ioxV,ixV); |
|
mutM(:,ib) = miM(tauV+1,ib); |
|
minmuttauV(ib) = findminMutInf(miM(:,ib),nsam); |
|
% Compute the cumulative mutual information for the given delays |
|
for i=1:ntau |
|
cummutM(i,ib) = sum(miM(1:tauV(i)+1,ib)); |
|
end |
|
end % for ib |
|
case 2 |
|
% Compute the mutual information for all lags up to the largest |
|
% given lag and then sum up to get the cumulative mutual information |
|
% for the given lags. |
|
cummutM = NaN*ones(ntau,nb); |
|
miM = NaN*ones(taumax+1,nb); |
|
for ib=1:nb |
|
b = bV(ib); |
|
if n<2*b |
|
break; |
|
end |
|
miM(:,ib)=mutinfHisPro(xV,[0:taumax]',b,ioxV,ixV); |
|
% Compute the cumulative mutual information for the given delays |
|
for i=1:ntau |
|
cummutM(i,ib) = sum(miM(1:tauV(i)+1,ib)); |
|
end |
|
end % for ib |
|
mutM = []; |
|
minmuttauV=[]; |
|
case 3 |
|
% Compute the mutual information for all lags up to the largest |
|
% given lag and then compute the lag of the first minimum of the |
|
% mutual information. |
|
minmuttauV = NaN*ones(nb,1); |
|
miM = NaN*ones(taumax+1,nb); |
|
for ib=1:nb |
|
b = bV(ib); |
|
if n<2*b |
|
break; |
|
end |
|
miM(:,ib)=mutinfHisPro(xV,[0:taumax]',b,ioxV,ixV); |
|
minmuttauV(ib) = findminMutInf(miM(:,ib),nsam); |
|
end % for ib |
|
mutM = []; |
|
cummutM=[]; |
|
end
|
|
|