You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
11 KiB
275 lines
11 KiB
function [RealignedAcc,RotationMatrixT,Flags] = RealignSensorSignalHRAmp(Acc, FS) |
|
|
|
% History |
|
% 2013/05/31 SR solve problem of ML-AP rotation of appr. 90 degrees ("Maximum number of function evaluations has been exceeded") |
|
% 2013/08/15 SR use literature HR (i.e. amplitude not power, and harmonic frequencies not sin^4 windows) |
|
% 2013/08/16 SR correct: use abs(X) instead of sqrt(X.*X) |
|
% 2013/09/11 SR use only relevant F (containing odd or even harmonics) and speed up determination of harmonic frequencies |
|
|
|
%% Define VT direction (RVT) as direction of mean acceleration |
|
MeanAcc = mean(Acc); |
|
RVT = MeanAcc'/norm(MeanAcc); |
|
RMLGuess = cross([0;0;1],RVT); RMLGuess = RMLGuess/norm(RMLGuess); |
|
RAPGuess = cross(RVT,RMLGuess); RAPGuess = RAPGuess/norm(RAPGuess); |
|
|
|
%% Estimate stride frequency |
|
StrideFrequency = StrideFrequencyFrom3dAcc(Acc, FS); |
|
AccDetrend = detrend(Acc,'constant'); |
|
|
|
N = size(AccDetrend,1); |
|
|
|
%% calculate complex DFT |
|
F = FS*(0:(N-1))'/N; |
|
|
|
dF = FS/N; |
|
FHarmRange = [(1:20)'-0.1, (1:20)'+0.1]*StrideFrequency; |
|
|
|
EvenRanges = FHarmRange(2:2:end,:); |
|
OddRanges = FHarmRange(1:2:end,:); |
|
|
|
EvenHarmonics = zeros(size(F)); |
|
for j=1:size(EvenRanges,1) |
|
IXRange = [EvenRanges(j,1)/dF, EvenRanges(j,2)/dF]+1; |
|
IXRangeRound = min(N,round(IXRange)); |
|
EvenHarmonics(IXRangeRound(1):IXRangeRound(2)) = EvenHarmonics(IXRangeRound(1):IXRangeRound(2)) + 1; |
|
EvenHarmonics(IXRangeRound(1)) = EvenHarmonics(IXRangeRound(1)) - (IXRange(1)-IXRangeRound(1)+0.5); |
|
EvenHarmonics(IXRangeRound(2)) = EvenHarmonics(IXRangeRound(2)) - (IXRangeRound(2)-IXRange(2)+0.5); |
|
end |
|
|
|
OddHarmonics = zeros(size(F)); |
|
for j=1:size(OddRanges,1) |
|
IXRange = [OddRanges(j,1)/dF, OddRanges(j,2)/dF]+1; |
|
IXRangeRound = min(N,round(IXRange)); |
|
OddHarmonics(IXRangeRound(1):IXRangeRound(2)) = OddHarmonics(IXRangeRound(1):IXRangeRound(2)) + 1; |
|
OddHarmonics(IXRangeRound(1)) = OddHarmonics(IXRangeRound(1)) - (IXRange(1)-IXRangeRound(1)+0.5); |
|
OddHarmonics(IXRangeRound(2)) = OddHarmonics(IXRangeRound(2)) - (IXRangeRound(2)-IXRange(2)+0.5); |
|
end |
|
|
|
%% select only frequencies that contain odd or even harmonics |
|
RelevantF = OddHarmonics~=0 | EvenHarmonics~=0; |
|
OddHarmonics = OddHarmonics(RelevantF); |
|
EvenHarmonics = EvenHarmonics(RelevantF); |
|
DFT = fft(AccDetrend,N,1); |
|
DFT = DFT(RelevantF,:); |
|
DFTMLG = DFT*RMLGuess; |
|
DFTAPG = DFT*RAPGuess; |
|
|
|
%% Initial estimation of ML-AP realignment (educated guess) |
|
% We start of by finding the directions ML = MLguess + x*APguess for which |
|
% the 'harmonic ratio' for the ML directions is maximal or minimal, and we |
|
% do this by varying x in still the power variant of HR instead of amplitude: |
|
HRML = @(x) real(((OddHarmonics'.*(DFTMLG'+x*DFTAPG'))*(DFTMLG+x*DFTAPG))... |
|
/((EvenHarmonics'.*(DFTMLG'+x*DFTAPG'))*(DFTMLG+x*DFTAPG))); |
|
% or by substititutions |
|
a = real((OddHarmonics.*DFTAPG)'*DFTAPG); |
|
b = real((OddHarmonics.*DFTMLG)'*DFTAPG + (OddHarmonics.*DFTAPG)'*DFTMLG); |
|
c = real((OddHarmonics.*DFTMLG)'*DFTMLG); |
|
d = real((EvenHarmonics.*DFTAPG)'*DFTAPG); |
|
e = real((EvenHarmonics.*DFTMLG)'*DFTAPG + (EvenHarmonics.*DFTAPG)'*DFTMLG); |
|
f = real((EvenHarmonics.*DFTMLG)'*DFTMLG); |
|
% and by setting d/dx(HRML(x))==0 we get the quadratic formula |
|
aq = a*e-b*d; |
|
bq = 2*a*f-2*c*d; |
|
cq = b*f-c*e; |
|
% DT = bq^2-4*aq*cq = 4*(a*f-*c*d)*(a*f-c*d) - 4*(a*e-b*d)*(b*f-c*e) |
|
% = 4aaff +4ccdd -8acdf -4abef -4bcde +4acee + 4bbdf |
|
% = 4aaff +4ccdd -4abef -4bcde +4ac(ee-df) +4(bb-ac)df |
|
x = (-bq +[1 -1]*sqrt(bq.^2-4*aq*cq))/(2*aq); |
|
% with hopefully two solutions for x. |
|
|
|
% from here on use amplitude HR: |
|
HRML = @(x) real((OddHarmonics'*abs(DFTMLG+x*DFTAPG))... |
|
/(EvenHarmonics'*abs(DFTMLG+x*DFTAPG))); |
|
% now we take the x for which the HR is maximal, and the x rotated 90 |
|
% degrees fo which it is minimal, and take the mean angle between them |
|
HR1 = HRML(x(1)); |
|
HR2 = HRML(x(2)); |
|
if HR1 > HR2 |
|
thetas = atan([x(1),-1/x(2)]); |
|
else |
|
thetas = atan([-1/x(1),x(2)]); |
|
end |
|
theta = mean(thetas); |
|
xeg = tan(theta); |
|
if abs(diff(thetas)) > pi/2 % thetas are more than 90 degrees apart, and the 'mean of the two axes' should be rotated 90 degrees |
|
xeg = -1/xeg; |
|
end |
|
|
|
%% Numerical search for best harmonic ratios product |
|
% Now we want to improve the solution, since the two above directions are |
|
% not necessarily orthogonal. Thus we want to find the orthogonal |
|
% directions ML = MLguess + x*APguess, and AP = APguess - x*MLguess, |
|
% for which the product of 'harmonic ratios' for the ML and AP directions |
|
% is maximal, and we do this by varying x, starting with the educated guess |
|
% above using power instead of amplitude: |
|
% HRML = ((OddHarmonics'.*(DFTMLG'+x*DFTAPG'))*(DFTMLG+x*DFTAPG))... |
|
% /((EvenHarmonics'.*(DFTMLG'+x*DFTAPG'))*(DFTMLG+x*DFTAPG)); |
|
% HRAP = ((EvenHarmonics'.*(-x*DFTMLG'+DFTAPG'))*(-x*DFTMLG+DFTAPG))... |
|
% /((OddHarmonics'.*(-x*DFTMLG'+DFTAPG'))*(-x*DFTMLG+DFTAPG)); |
|
% and |
|
% HR_Prod = HRML*HRAP = ... |
|
|
|
% Now use amplitude |
|
Minus_HR_Prod = @(x) -real(... |
|
(OddHarmonics'*abs(DFTMLG+x*DFTAPG))... |
|
/(EvenHarmonics'*abs(DFTMLG+x*DFTAPG))... |
|
*(EvenHarmonics'*abs(-x*DFTMLG+DFTAPG))... |
|
/(OddHarmonics'*abs(-x*DFTMLG+DFTAPG))); |
|
[xopt1,Minus_HR_Prod_opt1,exitflag1]=fminsearch(Minus_HR_Prod,xeg); |
|
if exitflag1 == 0 && abs(xopt1) > 100 % optimum for theta beyond +- pi/2 |
|
[xopt1a,Minus_HR_Prod_opt1a,exitflag1a]=fminsearch(Minus_HR_Prod,-xopt1); |
|
if ~(exitflag1a == 0 && abs(xopt1a) > 100) |
|
xopt1org = xopt1; |
|
xopt1 = xopt1a; |
|
Minus_HR_Prod_opt1 = Minus_HR_Prod_opt1a; |
|
end |
|
end |
|
options = optimset('LargeScale','off','GradObj','off','Display','notify'); |
|
[xopt2,Minus_HR_Prod_opt2,exitflag2]=fminunc(Minus_HR_Prod,xopt1,options); |
|
if exitflag2 == 0 && abs(xopt2) > 100 % optimum for theta beyond +- pi/2 |
|
[xopt2a,Minus_HR_Prod_opt2a,exitflag2a]=fminsearch(Minus_HR_Prod,-xopt2); |
|
if ~(exitflag2a == 0 && abs(xopt2a) > 100) |
|
xopt2 = xopt2a; |
|
Minus_HR_Prod_opt2 = Minus_HR_Prod_opt2a; |
|
end |
|
end |
|
|
|
RML = (RMLGuess+xopt2*RAPGuess)/sqrt(1+xopt2^2); |
|
RAP = cross(RVT,RML); RAP = RAP/norm(RAP); |
|
|
|
RT = [RVT,RML,RAP]; |
|
if nargout > 1 |
|
RotationMatrixT = RT; |
|
end |
|
RealignedAcc = Acc*RT; |
|
|
|
if nargout > 2 |
|
Flags = [exitflag1,exitflag2]; |
|
end |
|
|
|
if nargin > 2 && plotje |
|
Thetas = pi*(-0.49:0.01:0.49)'; |
|
Xs = tan(Thetas); |
|
HR_Prod = nan(size(Xs)); |
|
HRMLs = nan(size(Xs)); |
|
for i=1:numel(Xs), |
|
HR_Prod(i,1) = -Minus_HR_Prod(Xs(i)); |
|
HRMLs(i,1) = HRML(Xs(i)); |
|
end |
|
figure(); |
|
semilogy(Thetas,[HR_Prod,HRMLs.^2]); |
|
hold on; |
|
semilogy(atan(x),[HR1,HR2].^2,'r.'); |
|
semilogy(atan([xopt1;xopt2]),-[Minus_HR_Prod_opt1;Minus_HR_Prod_opt2],'g.'); |
|
semilogy(atan(xeg),-Minus_HR_Prod(xeg),'kx'); |
|
end |
|
|
|
%% attempt to solve it analytically: |
|
% % We can rewrite HR_Prod as: |
|
% % HR_Prod = |
|
% % ( (x.^2)*((OddHarmonics.*DFTAPG)'*DFTAPG) ... |
|
% % + x*((OddHarmonics.*DFTMLG)'*DFTAPG + (OddHarmonics.*DFTAPG)'*DFTMLG)... |
|
% % + ((OddHarmonics.*DFTMLG)'*DFTMLG) )... |
|
% % / |
|
% % ( (x.^2)*((EvenHarmonics.*DFTAPG)'*DFTAPG) ... |
|
% % + x*((EvenHarmonics.*DFTMLG)'*DFTAPG + (EvenHarmonics.*DFTAPG)'*DFTMLG)... |
|
% % + ((EvenHarmonics.*DFTMLG)'*DFTMLG) ) |
|
% % * |
|
% % ( (x.^2)*((EvenHarmonics.*DFTMLG)'*DFTMLG) ... |
|
% % - x*((EvenHarmonics.*DFTMLG)'*DFTAPG + (EvenHarmonics.*DFTAPG)'*DFTMLG)... |
|
% % + ((EvenHarmonics.*DFTAPG)'*DFTAPG) )... |
|
% % / |
|
% % ( (x.^2)*((OddHarmonics.*DFTMLG)'*DFTMLG) ... |
|
% % - x*((OddHarmonics.*DFTMLG)'*DFTAPG + (OddHarmonics.*DFTAPG)'*DFTMLG)... |
|
% % + ((OddHarmonics.*DFTAPG)'*DFTAPG) ) |
|
% % |
|
% % or by making these substitutions: |
|
% a2 = (OddHarmonics.*DFTAPG)'*DFTAPG; |
|
% a1 = (OddHarmonics.*DFTMLG)'*DFTAPG + (OddHarmonics.*DFTAPG)'*DFTMLG; |
|
% a0 = (OddHarmonics.*DFTMLG)'*DFTMLG; |
|
% c2 = (EvenHarmonics.*DFTAPG)'*DFTAPG; |
|
% c1 = (EvenHarmonics.*DFTMLG)'*DFTAPG + (EvenHarmonics.*DFTAPG)'*DFTMLG; |
|
% c0 = (EvenHarmonics.*DFTMLG)'*DFTMLG; |
|
% b2 = c0; |
|
% b1 = c1; |
|
% b0 = c2; |
|
% d2 = a0; |
|
% d1 = a1; |
|
% d0 = a2; |
|
% % we get: |
|
% % HR_Prod = (x.^2*a2 + x*a1 + a0) * (x.^2*b2 + x*b1 + b0) / (x.^2*c2 + x*c1 + c0) * (x.^2*d2 + x*d1 + d0) |
|
% % or: |
|
% % HR_Prod = N/D |
|
% % with |
|
% % N = ( x.^4*(a2*b2)... |
|
% % +x.^3*(a2*b1+a1*b2)... |
|
% % +x.^2*(a2*b0+a1*b1+a0*b2)... |
|
% % +x *(a1*b0+a0*b1)... |
|
% % + a0*b0 )... |
|
% % and with |
|
% % D = ( x.^4*(c2*d2)... |
|
% % +x.^3*(c2*d1+c1*d2)... |
|
% % +x.^2*(c2*d0+c1*d1+c0*d2)... |
|
% % +x *(c1*d0+c0*d1)... |
|
% % + c0*d0 ) |
|
% % or D = ( x.^4*(a0*b0)... |
|
% % +x.^3*(a1*b0+a0*b1)... |
|
% % +x.^2*(a2*b0+a1*b1+a0*b2)... |
|
% % +x *(a2*b1+a1*b2)... |
|
% % + a2*b2 ) |
|
% % or by substition of |
|
% n4 = a2*b2; |
|
% n3 = a2*b1+a1*b2; |
|
% n2 = a2*b0+a1*b1+a0*b2; |
|
% n1 = a1*b0+a0*b1; |
|
% n0 = a0*b0; |
|
% % d4 = n0; |
|
% % d3 = n1; |
|
% % d2 = n2; |
|
% % d1 = n3; |
|
% % d0 = n4; |
|
% % we get |
|
% % N = sum(ni*x^i) and D=sum(di*x^i) |
|
% % |
|
% % Then HR_Prod reaches a maximum or minimum when d/dx (N/D) = 0 |
|
% % or (dN/dx)/D - N/(D^2)*(dD/dx) = 0 |
|
% % or (dN/dx)*D - (dD/dx)*N = 0 |
|
% % or |
|
% % x^7*(4*n4*d4 - 4*n4*d4) |
|
% % + x^6*(4*n4*d3 - 4*n3*d4 + 3*n3*d4 - 3*n4*d3) |
|
% % + x^5*(4*n4*d2 - 4*n2*d4 + 3*n3*d3 - 3*n3*d3 + 2*n2*d4 - 2*n4*d2) |
|
% % + x^4*(4*n4*d1 - 4*n1*d4 + 3*n3*d2 - 3*n2*d3 + 2*n2*d3 - 2*n3*d2 + 1*n1*d4 - 1*n4*d1) |
|
% % + x^3*(4*n4*d0 - 4*n0*d4 + 3*n3*d1 - 3*n1*d3 + 2*n2*d2 - 2*n2*d2 + 1*n1*d3 - 1*n3*d1) |
|
% % + x^2*( 3*n3*d0 - 3*n0*d3 + 2*n2*d1 - 2*n1*d2 + 1*n1*d2 - 1*n2*d1) |
|
% % + x^1*( 2*n2*d0 - 2*n0*d2 + 1*n1*d1 - 1*n1*d1) |
|
% % + x^0*( 1*n1*d0 - 1*n0*d1) |
|
% % = 0 |
|
% % or |
|
% % x^6*(1*n4*d3 - 1*n3*d4) |
|
% % + x^5*(2*n4*d2 - 2*n2*d4) |
|
% % + x^4*(3*n4*d1 - 3*n1*d4 + 1*n3*d2 - 1*n2*d3) |
|
% % + x^3*(4*n4*d0 - 4*n0*d4 + 2*n3*d1 - 2*n1*d3) |
|
% % + x^2*( 3*n3*d0 - 3*n0*d3 + 1*n2*d1 - 1*n1*d2) |
|
% % + x^1*( 2*n2*d0 - 2*n0*d2) |
|
% % + x^0*( 1*n1*d0 - 1*n0*d1) |
|
% % = 0 |
|
% % or |
|
% % (x^6+x^0) * (1*n4*n1 - 1*n3*n0) |
|
% % + (x^5+x^1) * (2*n4*n2 - 2*n2*n0) |
|
% % + (x^4+x^2) * (3*n4*n3 - 3*n1*n0 + 1*n3*n2 - 1*n2*n1) |
|
% % + x^3 * (4*n4*n4 - 4*n0*n0 + 2*n3*n3 - 2*n1*n1) |
|
% % = 0 |
|
% % or |
|
% % (x^6+x^0) * (1*(a2*b2)*(a1*b0+a0*b1) - 1*(a2*b1+a1*b2)*(a0*b0)) |
|
% % + (x^5+x^1) * (2*(a2*b2)*(a2*b0+a1*b1+a0*b2) - 2*(a2*b0+a1*b1+a0*b2)*(a0*b0)) |
|
% % + (x^4+x^2) * (3*(a2*b2)*(a2*b1+a1*b2) - 3*(a1*b0+a0*b1)*(a0*b0) + 1*(a2*b1+a1*b2)*(a2*b0+a1*b1+a0*b2) - 1*(a2*b0+a1*b1+a0*b2)*(a1*b0+a0*b1)) |
|
% % + x^3 * (4*(a2*b2)*(a2*b2) - 4*(a0*b0)*(a0*b0) + 2*(a2*b1+a1*b2)*(a2*b1+a1*b2) - 2*(a1*b0+a0*b1)*(a1*b0+a0*b1)) |
|
% % = 0 |
|
% % or |
|
% % (x^6+x^0) * (a2*b2*a1*b0 + a2*b2*b1*a0 - a2*b1*a0*b0 - b2*a1*a0*b0) |
|
% % + (x^5+x^1) * (2*(a2*a2*b2*b0+a2*b2*b2*a0+a2*b2*a1*b1) - 2*(a2*a0*b0*b0+b2*a0*a0*b0+a1*b1*a0*b0)) |
|
% % + (x^4+x^2) * (3*a2*a2*b2*b1 +a2*a2*b1*b0 +3*a2*b2*b2*a1 +a2*b2*a1*b0 +a2*b2*b1*a0 +a2*a1*b1*b1 -a2*a1*b0*b0 -a2*a0*b1*b0 +b2*b2*a1*a0 +b2*a1*a1*b1 -b2*a1*a0*b0 -b2*b1*a0*a0 -a1*a1*b1*b0 -a1*b1*b1*a0 -3*a1*a0*b0*b0 -3*b1*a0*a0*b0) |
|
% % + x^3 * (4*a2*a2*b2*b2 +2*a2*a2*b1*b1 +4*a2*b2*a1*b1 +2*b2*b2*a1*a1 -2*a1*a1*b0*b0 -4*a1*b1*a0*b0 -2*b1*b1*a0*a0 -4*a0*a0*b0*b0) |
|
% % = 0 |
|
% % which can probably not be solved analytically?. |
|
|
|
|