2 changed files with 31 additions and 270 deletions
@ -1,218 +0,0 @@
@@ -1,218 +0,0 @@
|
||||
import matplotlib.pyplot as plt |
||||
import numpy as np |
||||
from itertools import cycle |
||||
import argparse |
||||
import pickle |
||||
import yaml |
||||
|
||||
def is_ipython(): |
||||
''' Check if script is run in IPython. |
||||
|
||||
Returns: |
||||
bool: True if IPython, else False ''' |
||||
try: |
||||
get_ipython() |
||||
ipy = True |
||||
except NameError: |
||||
ipy = False |
||||
|
||||
return ipy |
||||
|
||||
|
||||
def load_data(file): |
||||
''' Load numpy data from file. |
||||
|
||||
Returns |
||||
dict: data dictionary |
||||
''' |
||||
dat = np.load(file) |
||||
|
||||
return dat |
||||
|
||||
|
||||
def plot_parameters(dat, input_file, deparameterize=False, ref=None): |
||||
''' Plot the parameters in separate subplots with uncertainties. |
||||
|
||||
Args: |
||||
dat (dict): data dictionary |
||||
deparameterize (bool): flag indicating if parameters should be |
||||
deparameterized via 2**theta |
||||
ref: reference value to be plotted with parameters |
||||
''' |
||||
if is_ipython(): |
||||
plt.ion() |
||||
|
||||
idx_a = input_file.find('/') |
||||
idx_b = input_file[idx_a+1::].find('/') |
||||
name_file = input_file[idx_a+1:idx_b+idx_a+1] |
||||
inputfile_path = 'results/' + name_file + '/input.yaml' |
||||
|
||||
|
||||
with open(inputfile_path) as file: |
||||
inputfile = yaml.full_load(file) |
||||
|
||||
|
||||
|
||||
true_values = { |
||||
3: 4800, |
||||
4: 7200, |
||||
5: 11520, |
||||
6: 11520, |
||||
2: 75 |
||||
} |
||||
|
||||
true_values_C = { |
||||
3: 0.0004, |
||||
4: 0.0004, |
||||
5: 0.0003, |
||||
6: 0.0003, |
||||
} |
||||
|
||||
|
||||
|
||||
|
||||
meas_flag = False |
||||
RC_mod = True |
||||
line_split = 1.5 |
||||
current_val = [] |
||||
current_val_C = [] |
||||
ids_type = [] |
||||
labels = [] |
||||
ids = [] |
||||
|
||||
for bnd_c in inputfile['estimation']['boundary_conditions']: |
||||
|
||||
if 'windkessel' in bnd_c['type']: |
||||
for bnd_set in inputfile['boundary_conditions']: |
||||
if bnd_c['id'] == bnd_set['id']: |
||||
ids.append(bnd_c['id']) |
||||
ids_type.append('windkessel') |
||||
current_val.append(bnd_set['parameters']['R_d']) |
||||
labels.append('$R_' + str(bnd_c['id'])) |
||||
if RC_mod: |
||||
current_val_C.append(bnd_set['parameters']['C']) |
||||
labels.append('$C_' + str(bnd_c['id'])) |
||||
|
||||
|
||||
elif 'dirichlet' in bnd_c['type']: |
||||
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U']) |
||||
ids.append(bnd_c['id']) |
||||
ids_type.append('dirichlet') |
||||
labels.append('$U') |
||||
|
||||
|
||||
|
||||
|
||||
dim = dat['theta'].shape[-1] |
||||
fig1, axes = plt.subplots(1,1,figsize=(8,6)) |
||||
|
||||
axes.set_ylabel(r'$\theta$',fontsize=18) |
||||
|
||||
t = dat['times'] |
||||
theta = dat['theta'] |
||||
P = dat['P_theta'] |
||||
|
||||
col = cycle(['C0', 'C1', 'C2', 'C3','C4']) |
||||
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.']) |
||||
legends = cycle(labels) |
||||
|
||||
if meas_flag: |
||||
t_und = t[0::30] |
||||
t_und = np.append( t_und , [t[-1]]) |
||||
meas_mark = t_und*0 |
||||
|
||||
col_ = next(col) |
||||
ls_ = next(ls) |
||||
legends_=next(legends) |
||||
|
||||
if dim == 1: |
||||
theta = theta.reshape((-1, 1)) |
||||
P = P.reshape((-1, 1, 1)) |
||||
|
||||
|
||||
|
||||
idx = 0 |
||||
idc = 0 |
||||
|
||||
for i in range(len(ids)): |
||||
cur_key = ids[i] |
||||
|
||||
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2) |
||||
rec_value = np.round(2**theta[-1, idx]*current_val[i],2) |
||||
|
||||
#curve = theta[:,i] + line_split*i |
||||
#dash_curve = line_split*i + t*0 + true_level |
||||
|
||||
curve = theta[:,idx] + line_split*idx - true_level |
||||
dash_curve = line_split*idx + t*0 |
||||
|
||||
axes.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$') |
||||
axes.fill_between(t, curve - np.sqrt(P[:, idx, idx]), curve + np.sqrt(P[:, idx, idx]), alpha=0.3, color=col_) |
||||
legends_=next(legends) |
||||
axes.plot(t, dash_curve , color=col_,ls='--') |
||||
|
||||
|
||||
if RC_mod: |
||||
|
||||
if i<len(current_val_C): |
||||
true_level_C = np.log(true_values_C[ids[i]]/current_val_C[i])/np.log(2) |
||||
rec_value_C = np.round(2**theta[-1, idc]*current_val_C[idc],6) |
||||
curve_C = theta[:,idx+1] + line_split*(idx+1) - true_level_C |
||||
dash_curve_C = line_split*(idx+1) + t*0 |
||||
#print(true_values_C[cur_key_C]) |
||||
axes.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$') |
||||
axes.fill_between(t, curve_C - np.sqrt(P[:, idx+1, idx+1]), curve_C + np.sqrt(P[:, idx+1, idx+1]), alpha=0.3, color=col_) |
||||
axes.plot(t, dash_curve_C , color=col_,ls='--') |
||||
legends_=next(legends) |
||||
idx +=1 |
||||
idc +=1 |
||||
|
||||
|
||||
if meas_flag: |
||||
axes.plot(t_und, meas_mark + line_split*idx, marker = 'x', color='red') |
||||
|
||||
col_ = next(col) |
||||
idx +=1 |
||||
|
||||
axes.legend(fontsize=14,loc='lower right') |
||||
axes.set_xlim([-0.01,0.81]) |
||||
axes.set_xlabel(r'time (s)',fontsize=18) |
||||
# print('theta_peak: \t {}'.format(theta[round(len(theta)/2), :])) |
||||
print('Final value theta: \t {}'.format(theta[-1, :])) |
||||
print('Deparameterized: 2^theta_end: \t {}'.format(2**theta[-1, :])) |
||||
print('Real values: \t {}'.format(true_values)) |
||||
#print('Recon values: \t {a}:{b} '.format(a=ids[:],b=np.round(2**theta[-1, :]*current_val,2))) |
||||
|
||||
|
||||
|
||||
plt.savefig('windk_res') |
||||
if not is_ipython(): |
||||
plt.show() |
||||
|
||||
|
||||
def get_parser(): |
||||
parser = argparse.ArgumentParser( |
||||
description=''' |
||||
Plot the time evolution of the ROUKF estimated parameters. |
||||
|
||||
To execute in IPython:: |
||||
|
||||
%run plot_roukf_parameters.py [-d] [-r N [N \ |
||||
...]] file |
||||
''', |
||||
formatter_class=argparse.RawDescriptionHelpFormatter) |
||||
parser.add_argument('file', type=str, help='path to ROUKF stats file') |
||||
parser.add_argument('-d', '--deparameterize', action='store_true', |
||||
help='deparameterize the parameters by 2**theta') |
||||
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None, |
||||
type=float, help='Reference values for parameters') |
||||
|
||||
return parser |
||||
|
||||
|
||||
if __name__ == '__main__': |
||||
args = get_parser().parse_args() |
||||
|
||||
dat = load_data(args.file) |
||||
|
||||
plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref) |
Loading…
Reference in new issue