J.E. Garay Labra 1 year ago
parent 06e9bc2468
commit 9c6c60093a
  1. 218
      kalman/graphics/figure2.py
  2. 83
      kalman/input_files/aorta.yaml

@ -1,218 +0,0 @@
import matplotlib.pyplot as plt
import numpy as np
from itertools import cycle
import argparse
import pickle
import yaml
def is_ipython():
''' Check if script is run in IPython.
Returns:
bool: True if IPython, else False '''
try:
get_ipython()
ipy = True
except NameError:
ipy = False
return ipy
def load_data(file):
''' Load numpy data from file.
Returns
dict: data dictionary
'''
dat = np.load(file)
return dat
def plot_parameters(dat, input_file, deparameterize=False, ref=None):
''' Plot the parameters in separate subplots with uncertainties.
Args:
dat (dict): data dictionary
deparameterize (bool): flag indicating if parameters should be
deparameterized via 2**theta
ref: reference value to be plotted with parameters
'''
if is_ipython():
plt.ion()
idx_a = input_file.find('/')
idx_b = input_file[idx_a+1::].find('/')
name_file = input_file[idx_a+1:idx_b+idx_a+1]
inputfile_path = 'results/' + name_file + '/input.yaml'
with open(inputfile_path) as file:
inputfile = yaml.full_load(file)
true_values = {
3: 4800,
4: 7200,
5: 11520,
6: 11520,
2: 75
}
true_values_C = {
3: 0.0004,
4: 0.0004,
5: 0.0003,
6: 0.0003,
}
meas_flag = False
RC_mod = True
line_split = 1.5
current_val = []
current_val_C = []
ids_type = []
labels = []
ids = []
for bnd_c in inputfile['estimation']['boundary_conditions']:
if 'windkessel' in bnd_c['type']:
for bnd_set in inputfile['boundary_conditions']:
if bnd_c['id'] == bnd_set['id']:
ids.append(bnd_c['id'])
ids_type.append('windkessel')
current_val.append(bnd_set['parameters']['R_d'])
labels.append('$R_' + str(bnd_c['id']))
if RC_mod:
current_val_C.append(bnd_set['parameters']['C'])
labels.append('$C_' + str(bnd_c['id']))
elif 'dirichlet' in bnd_c['type']:
current_val.append(inputfile['boundary_conditions'][0]['parameters']['U'])
ids.append(bnd_c['id'])
ids_type.append('dirichlet')
labels.append('$U')
dim = dat['theta'].shape[-1]
fig1, axes = plt.subplots(1,1,figsize=(8,6))
axes.set_ylabel(r'$\theta$',fontsize=18)
t = dat['times']
theta = dat['theta']
P = dat['P_theta']
col = cycle(['C0', 'C1', 'C2', 'C3','C4'])
ls = cycle(['-', '-', '--', '--', ':', ':', '-.', '-.'])
legends = cycle(labels)
if meas_flag:
t_und = t[0::30]
t_und = np.append( t_und , [t[-1]])
meas_mark = t_und*0
col_ = next(col)
ls_ = next(ls)
legends_=next(legends)
if dim == 1:
theta = theta.reshape((-1, 1))
P = P.reshape((-1, 1, 1))
idx = 0
idc = 0
for i in range(len(ids)):
cur_key = ids[i]
true_level = np.log(true_values[ids[i]]/current_val[i])/np.log(2)
rec_value = np.round(2**theta[-1, idx]*current_val[i],2)
#curve = theta[:,i] + line_split*i
#dash_curve = line_split*i + t*0 + true_level
curve = theta[:,idx] + line_split*idx - true_level
dash_curve = line_split*idx + t*0
axes.plot(t, curve , '-', color=col_,label= legends_ + '= ' + str(rec_value) + '/' + str(true_values[cur_key]) + '$')
axes.fill_between(t, curve - np.sqrt(P[:, idx, idx]), curve + np.sqrt(P[:, idx, idx]), alpha=0.3, color=col_)
legends_=next(legends)
axes.plot(t, dash_curve , color=col_,ls='--')
if RC_mod:
if i<len(current_val_C):
true_level_C = np.log(true_values_C[ids[i]]/current_val_C[i])/np.log(2)
rec_value_C = np.round(2**theta[-1, idc]*current_val_C[idc],6)
curve_C = theta[:,idx+1] + line_split*(idx+1) - true_level_C
dash_curve_C = line_split*(idx+1) + t*0
#print(true_values_C[cur_key_C])
axes.plot(t, curve_C , '-', color=col_,label= legends_ + '= ' + str(rec_value_C) + '/' + str(true_values_C[cur_key]) + '$')
axes.fill_between(t, curve_C - np.sqrt(P[:, idx+1, idx+1]), curve_C + np.sqrt(P[:, idx+1, idx+1]), alpha=0.3, color=col_)
axes.plot(t, dash_curve_C , color=col_,ls='--')
legends_=next(legends)
idx +=1
idc +=1
if meas_flag:
axes.plot(t_und, meas_mark + line_split*idx, marker = 'x', color='red')
col_ = next(col)
idx +=1
axes.legend(fontsize=14,loc='lower right')
axes.set_xlim([-0.01,0.81])
axes.set_xlabel(r'time (s)',fontsize=18)
# print('theta_peak: \t {}'.format(theta[round(len(theta)/2), :]))
print('Final value theta: \t {}'.format(theta[-1, :]))
print('Deparameterized: 2^theta_end: \t {}'.format(2**theta[-1, :]))
print('Real values: \t {}'.format(true_values))
#print('Recon values: \t {a}:{b} '.format(a=ids[:],b=np.round(2**theta[-1, :]*current_val,2)))
plt.savefig('windk_res')
if not is_ipython():
plt.show()
def get_parser():
parser = argparse.ArgumentParser(
description='''
Plot the time evolution of the ROUKF estimated parameters.
To execute in IPython::
%run plot_roukf_parameters.py [-d] [-r N [N \
...]] file
''',
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('file', type=str, help='path to ROUKF stats file')
parser.add_argument('-d', '--deparameterize', action='store_true',
help='deparameterize the parameters by 2**theta')
parser.add_argument('-r', '--ref', metavar='N', nargs='+', default=None,
type=float, help='Reference values for parameters')
return parser
if __name__ == '__main__':
args = get_parser().parse_args()
dat = load_data(args.file)
plot_parameters(dat, args.file,deparameterize=args.deparameterize, ref=args.ref)

@ -8,7 +8,7 @@ fluid:
state_velocity: 'update'
io:
write_path: 'results/Pb_test'
write_path: 'results/aorta'
restart:
path: '' # './projects/nse_coa3d/results/test_restart2/'
time: 0
@ -26,10 +26,7 @@ boundary_conditions:
# -U*sin(DOLFIN_PI*(t-1.6)/Th)*(t<= 1.6+Th )*(t>1.6) + (t<2.4)*(1.6+Th<t)*(U*DOLFIN_PI/Th*(t-1.6-Th)*exp(-(t-1.6-Th)*beta))' ]
value: ['0','0','-U*sin(DOLFIN_PI*t/Th)*(t<=Th) + (Th<t)*(U*DOLFIN_PI/Th*(t-Th)*exp(-(t-Th)*beta))']
parameters:
#U: 75 #REFERENCE
#U: 120
U: 150 #Pa/Pb
#U: 40 #Pc
U: 75 #REFERENCE
Th: 0.36
beta: 70
t: 0
@ -52,13 +49,9 @@ boundary_conditions:
parameters:
R_p: 480
C: 0.0004 # REFERENCE
#C: 0.0005 # Pa
#C: 0.0010 # Pb
#C: 0.0001 # Pc
#C: 0.0008 # Pg
#R_d: 7200 # REFERENCE
#R_d: 8760 #Pa
R_d: 17520 #Pb x2
R_d: 8760 #Pa
#R_d: 17520 #Pb x2
#R_d: 4000 #Pc
p0: 85
conv: 1333.223874
@ -68,13 +61,9 @@ boundary_conditions:
parameters:
R_p: 520
C: 0.0003 # REFERENCE
#C: 0.0005 # Pa
#C: 0.0010 # Pb
#C: 0.0001 # Pc
#C: 0.0008 # Pg
#R_d: 11520 # REFERENCE
#R_d: 8760 #Pa
R_d: 17520 #Pb x2
R_d: 8760 #Pa
#R_d: 17520 #Pb x2
#R_d: 4000 #Pc
p0: 85
conv: 1333.223874
@ -84,12 +73,9 @@ boundary_conditions:
parameters:
R_p: 520
C: 0.0003 # REFERENCE
#C: 0.0005 #Pa
#C: 0.0010 #Pb
#C: 0.0001 #Pc
#R_d: 11520 # REFERENCE
#R_d: 8760 #Pa
R_d: 17520 #Pb x2
R_d: 8760 #Pa
#R_d: 17520 #Pb x2
#R_d: 4000 #Pc
p0: 85
conv: 1333.223874
@ -174,45 +160,38 @@ estimation:
type: 'windkessel'
mode: 'Rd'
initial_stddev: 0.5
-
id: 5
type: 'windkessel'
mode: 'Rd'
initial_stddev: 0.5
-
id: 6
type: 'windkessel'
mode: 'Rd'
initial_stddev: 0.5
-
id: 2
type: 'dirichlet'
parameters: 'U'
initial_stddev: 0.5
#-
# id: 5
# type: 'windkessel'
# mode: 'Rd'
# initial_stddev: 0.5
#-
# id: 6
# type: 'windkessel'
# mode: 'Rd'
# initial_stddev: 0.5
#-
# id: 2
# type: 'dirichlet'
# parameters: 'U'
# initial_stddev: 0.5
measurements:
-
#mesh: '/home/yeye/NuMRI/kalman/meshes/coaortaH3_leo2.0.h5'
mesh: '/home/yeye/Desktop/slices/slice_Hz2.3.h5'
mesh: '/home/yeye/NuMRI/kalman/meshes/slice_Hz2.3.h5'
fe_degree: 0
xdmf_file: 'measurements/slice_Hz2.3/Perturbation/Mg15V30/u_all.xdmf'
file_root: 'measurements/slice_Hz2.3/Perturbation/Mg15V30/u{i}.h5'
#xdmf_file: 'measurements/slice_Hz2.3/Perturbation/Mg15V120/u_all.xdmf'
#file_root: 'measurements/slice_Hz2.3/Perturbation/Mg15V120/u{i}.h5'
#xdmf_file: 'measurements/slice_Hz2.3/u_all.xdmf'
#file_root: 'measurements/slice_Hz2.3/u{i}.h5'
xdmf_file: 'measurements/slice/u_all.xdmf'
file_root: 'measurements/slice/u{i}.h5'
indices: 0 # indices of checkpoints to be processed. 0 == all
velocity_direction: [0,0,1]
#noise_stddev: 13.81
noise_stddev: 'initial'
#noise_stddev: 0.181
VENC: 28
module_meas_file_root: 'measurements/slice_Hz2.3/Perturbation/Mg15V30/module/M{i}.h5'
velocity_direction: ~
noise_stddev: 10
VENC: 0
module_meas_file_root: ''
roukf:
particles: 'simplex' # unique or simplex
observation_operator: 'postprocessing' #state or postprocessing
reparameterize: True
MAG_functional: True
MAG_functional: False
Loading…
Cancel
Save