Browse Source

mods

master
abc 2 years ago
parent
commit
6052587789
  1. 59
      presentation/pres03.tex

59
presentation/pres03.tex

@ -404,9 +404,18 @@ Experiments using synthetic data @@ -404,9 +404,18 @@ Experiments using synthetic data
%\end{frame}
%
\begin{frame}
\frametitle{Numerical tests}
\begin{center}
Results
\end{center}
\end{frame}
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
\onslide<1-> For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
@ -415,14 +424,14 @@ Experiments using synthetic data @@ -415,14 +424,14 @@ Experiments using synthetic data
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_1.png}
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc) = (\infty,120\%)$. $\vec{w} \times 200$}
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
@ -431,7 +440,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -431,7 +440,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_2.png}
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc) = (\infty,80\%)$. $\vec{w} \times 4$ }
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
\end{center}
\end{figure}
@ -440,14 +449,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -440,14 +449,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_3.png}
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,120\%)$. $\delta \vec{u}, \vec{w} \times 4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
\end{center}
\end{figure}
@ -456,14 +465,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -456,14 +465,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_{ref} - \vec u_{meas}$
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.45\textwidth]{images/channel_ppt_4.png}
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc) = (10 \ dB,80\%)$. $\vec{w} \times 4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120 \%)$: $\vec{w} \times 200$, $(10 \ dB , 120 \%)$: $\delta \vec{u}, \vec{w} \times 4$, rest: $\vec{w} \times 4$ }
\end{center}
\end{figure}
@ -473,7 +482,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -473,7 +482,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
\begin{figure}[!hbtp]
@ -488,7 +497,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -488,7 +497,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
\begin{figure}[!hbtp]
@ -505,7 +514,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -505,7 +514,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: undersampling}
\frametitle{Undersampling}
\footnotesize
\begin{figure}[!hbtp]
@ -520,20 +529,20 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_ @@ -520,20 +529,20 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: undersampling}
\footnotesize
\begin{figure}[!hbtp]
\begin{center}
\includegraphics[height=0.6\textwidth]{images/undersampling_press.png}
\caption{ \footnotesize Different undersampling rates for the channel}
\end{center}
\end{figure}
\end{frame}
%\begin{frame}
% \frametitle{Results for channel: undersampling}
%\footnotesize
%
%\begin{figure}[!hbtp]
% \begin{center}
% \includegraphics[height=0.6\textwidth]{images/undersampling_press.png}
%\caption{ \footnotesize Different undersampling rates for the channel}
% \end{center}
% \end{figure}
%
%
%\end{frame}
%

Loading…
Cancel
Save