\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc)=(\infty,120\%)$. $\vec{w}\times200$}
\end{center}
\end{figure}
\end{frame}
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta\vec u =\vec u_{ref}-\vec u_{meas}$
@ -431,7 +440,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -431,7 +440,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc)=(\infty,80\%)$. $\vec{w}\times4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120\%)$: $\vec{w}\times200$, $(10\ dB , 120\%)$: $\delta\vec{u}, \vec{w}\times4$, rest: $\vec{w}\times4$}
\end{center}
\end{figure}
@ -440,14 +449,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -440,14 +449,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta\vec u =\vec u_{ref}-\vec u_{meas}$
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc)=(10\ dB,120\%)$. $\delta\vec{u}, \vec{w}\times4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120\%)$: $\vec{w}\times200$, $(10\ dB , 120\%)$: $\delta\vec{u}, \vec{w}\times4$, rest: $\vec{w}\times4$}
\end{center}
\end{figure}
@ -456,14 +465,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -456,14 +465,14 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
For comparison we defined a perfect corrector field as: $\delta\vec u =\vec u_{ref}-\vec u_{meas}$
\caption{\small Fields for the channel in terms of (SNR,$venc$)}
\caption{\small Fields for the channel: $(SNR,venc)=(10\ dB,80\%)$. $\vec{w}\times4$}
%\caption{\small Different perturbation scenarios. $(\infty , 120\%)$: $\vec{w}\times200$, $(10\ dB , 120\%)$: $\delta\vec{u}, \vec{w}\times4$, rest: $\vec{w}\times4$}
\end{center}
\end{figure}
@ -473,7 +482,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -473,7 +482,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
\begin{figure}[!hbtp]
@ -488,7 +497,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -488,7 +497,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: aliasing and noise}
\frametitle{Aliasing and noise}
\footnotesize
\begin{figure}[!hbtp]
@ -505,7 +514,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -505,7 +514,7 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
\begin{frame}
\frametitle{Results for channel: undersampling}
\frametitle{Undersampling}
\footnotesize
\begin{figure}[!hbtp]
@ -520,20 +529,20 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_
@@ -520,20 +529,20 @@ For comparison we defined a perfect corrector field as: $\delta \vec u = \vec u_