Note: some changes in this version were suggested by anonymous reviewers from the journal we submitted our manuscipt to. We are those reviewers very grateful for going through our code so thoroughly!
#' 3. The level of uncertainty \eqn{U} needed to get to the result, as stated above (1 to 3);
#' 4. The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
#'
#' \deqn{L' = F - \frac{0.5 \times L}{F}}{L' = F - (0.5 * L) / F}
#' 3. The level of uncertainty \eqn{U} that is needed to get to a result (1 to 3, see [as.mo()]);
#' 4. The [Levenshtein distance](https://en.wikipedia.org/wiki/Levenshtein_distance) \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
#'
#' \deqn{L' = F - \frac{0.5 \times L}{F}}{L' = F - (0.5 * L) / F}
<ahref="#last-updated-18-september-2020" class="anchor"></a><small>Last updated: 18 September 2020</small>
<ahref="#last-updated-19-september-2020" class="anchor"></a><small>Last updated: 19 September 2020</small>
</h2>
<p>Note: some changes in this version were suggested by anonymous reviewers from the journal we submitted our manuscipt to. We are those reviewers very grateful for going through our code so thoroughly!</p>
<spanclass="version label label-default"data-toggle="tooltip"data-placement="bottom"title="Latest development version">1.3.0.9022</span>
<spanclass="version label label-default"data-toggle="tooltip"data-placement="bottom"title="Latest development version">1.3.0.9023</span>
</span>
</div>
@ -376,9 +376,9 @@
<li><p>The <ahref='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> \(L\) is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \(L'\) based on the text length of the full name \(F\) is calculated as:</p></li>
</ol>
<p>$$L' = F - \frac{0.5 \times L}{F}$$</p>
<p>$$L' = F - \frac{0.5L}{F}$$</p>
<p>The final matching score \(M\) is calculated as:
$$M = L' \times \frac{1}{P \times K} * \frac{1}{U}$$</p>
$$M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}$$</p>
<p>All matches are sorted descending on their matching score and for all user input values, the top match will be returned.</p>
<spanclass="version label label-default"data-toggle="tooltip"data-placement="bottom"title="Latest development version">1.3.0.9022</span>
<spanclass="version label label-default"data-toggle="tooltip"data-placement="bottom"title="Latest development version">1.3.0.9023</span>
</span>
</div>
@ -270,9 +270,9 @@
<li><p>The <ahref='https://en.wikipedia.org/wiki/Levenshtein_distance'>Levenshtein distance</a> \(L\) is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \(L'\) based on the text length of the full name \(F\) is calculated as:</p></li>
</ol>
<p>$$L' = F - \frac{0.5 \times L}{F}$$</p>
<p>$$L' = F - \frac{0.5L}{F}$$</p>
<p>The final matching score \(M\) is calculated as:
$$M = L' \times \frac{1}{P \times K} * \frac{1}{U}$$</p>
$$M = L' \times \frac{1}{P K U} = \frac{F - 0.5L}{F P K U}$$</p>
@ -136,10 +136,10 @@ With ambiguous user input, the returned results are chosen based on their matchi
\item The \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
}
\deqn{L' = F - \frac{0.5 \times L}{F}}{L' = F - (0.5 * L) / F}
@ -25,10 +25,10 @@ The matching score is based on four parameters:
\item The \href{https://en.wikipedia.org/wiki/Levenshtein_distance}{Levenshtein distance} \eqn{L} is the distance between the user input and all taxonomic full names, with the text length of the user input being the maximum distance. A modified version of the Levenshtein distance \eqn{L'} based on the text length of the full name \eqn{F} is calculated as:
}
\deqn{L' = F - \frac{0.5 \times L}{F}}{L' = F - (0.5 * L) / F}