* Function `is_new_episode()` to determine patient episodes which are not necessarily based on microorganisms. It also supports grouped variables with e.g. `mutate()`, `filter()` and `summarise()` of the `dplyr` package:
* Functions `get_episode()` and `is_new_episode()` to determine (patient) episodes which are not necessarily based on microorganisms. The `get_episode()` function returns the index number of the episode per group, while the `is_new_episode()` function returns values `TRUE`/`FALSE` to indicate whether an item in a vector is the start of a new episode. They also support `dplyr`s grouping (i.e. using `group_by()`):
```r
library(dplyr)
example_isolates %>%
@ -23,7 +22,6 @@
* If using `as.rsi()` on MICs or disk diffusion while there is intrinsic antimicrobial resistance, a warning will be thrown to remind about this
* Fix for using `as.rsi()` on a `data.frame` that only contains one column for antibiotic interpretations
* Some functions are now context-aware when used inside `dplyr` verbs, such as `filter()`, `mutate()` and `summarise()`. This means that then the data argument does not need to be set anymore. This is the case for the new functions `mo_is_gram_negative()`, `mo_is_gram_positive()`, `mo_is_intrinsic_resistant()` and for the existing functions `first_isolate()`, `key_antibiotics()`, `mdro()`, `brmo()`, `mrgn()`, `mdr_tb()`, `mdr_cmi2012()`, `eucast_exceptional_phenotypes()`. This was already the case for antibiotic selection functions (such as using `penicillins()` in `dplyr::select()`).
```r
# to select first isolates that are Gram-negative
# and view results of cephalosporins and aminoglycosides:
#' This function determines which items in a vector can be considered (the start of) a new episode, based on the argument `episode_days`. This can be used to determine clinical episodes for any epidemiological analysis.
#' These functions determine which items in a vector can be considered (the start of) a new episode, based on the argument `episode_days`. This can be used to determine clinical episodes for any epidemiological analysis. The [get_episode()] function returns the index number of the episode per group, while the [is_new_episode()] function returns values `TRUE`/`FALSE` to indicate whether an item in a vector is the start of a new episode.
#' @inheritSection lifecycle Stable lifecycle
#' @param x vector of dates (class `Date` or `POSIXt`)
#' @param episode_days length of the required episode in days, defaults to 365. Every element in the input will return `TRUE` after this number of days has passed since the last included date, independent of calendar years. Please see *Details*.
#' @param episode_days length of the required episode in days, please see *Details*
#' @param ... arguments passed on to [as.Date()]
#' @details
#' Dates are first sorted from old to new. The oldest date will mark the start of the first episode. After this date, the next date will be marked that is at least `episode_days` days later than the start of the first episode. From that second marked date on, the next date will be marked that is at least `episode_days` days later than the start of the second episode which will be the start of the third episode, and so on. Before the vector is being returned, the original order will be restored.
#'
#' The [first_isolate()] function is a wrapper around the [is_new_episode()] function, but more efficient for data sets containing microorganism codes or names.
#' The [first_isolate()] function is a wrapper around the [is_new_episode()] function, but is more efficient for data sets containing microorganism codes or names.
#'
#' The `dplyr` package is not required for this function to work, but this function works conveniently inside `dplyr` verbs such as [`filter()`][dplyr::filter()], [`mutate()`][dplyr::mutate()] and [`summarise()`][dplyr::summarise()].
#' @return a [logical] vector
#' The `dplyr` package is not required for these functions to work, but these functions support [variable grouping][dplyr::group_by()] and work conveniently inside `dplyr` verbs such as [`filter()`][dplyr::filter()], [`mutate()`][dplyr::mutate()] and [`summarise()`][dplyr::summarise()].
#' @return
#' * [get_episode()]: a [double] vector
#' * [is_new_episode()]: a [logical] vector
#' @seealso [first_isolate()]
#' @rdname get_episode
#' @export
#' @inheritSection AMR Read more on our website!
#' @examples
#' # `example_isolates` is a dataset available in the AMR package.
stop_ifnot(interactive(),"this function can only be used in interactive mode, since it must ask for the user's permission to write a file to their home folder.")
<scriptsrc="../bootstrap-toc.js"></script><!-- Font Awesome icons --><linkrel="stylesheet"href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css"integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk="crossorigin="anonymous">
<p><strong>Note:</strong> values on this page will change with every website update since they are based on randomly created values and the page was written in <ahref="https://rmarkdown.rstudio.com/">R Markdown</a>. However, the methodology remains unchanged. This page was generated on 24 December 2020.</p>
<p><strong>Note:</strong> values on this page will change with every website update since they are based on randomly created values and the page was written in <ahref="https://rmarkdown.rstudio.com/">R Markdown</a>. However, the methodology remains unchanged. This page was generated on 26 December 2020.</p>
<p>We made a slight twist to the CLSI algorithm, to take into account the antimicrobial susceptibility profile. Have a look at all isolates of patient M9, sorted on date:</p>
<p>We made a slight twist to the CLSI algorithm, to take into account the antimicrobial susceptibility profile. Have a look at all isolates of patient F3, sorted on date:</p>