* Adopted Adeolu *et al.* (2016), [PMID 27620848](https://www.ncbi.nlm.nih.gov/pubmed/27620848) for the `microorganisms` data set, which means that the new order Enterobacterales now consists of a part of the existing family Enterobacteriaceae, but that this family has been split into other families as well (like *Morganellaceae* and *Yersiniaceae*). Although published in 2016, this information is not yet in the Catalogue of Life version of 2019. All MDRO determinations with `mdro()` will now use the Enterobacterales order for all guidelines before 2016 that were dependent on the Enterobacteriaceae family.
@ -25,6 +25,7 @@
@@ -25,6 +25,7 @@
* Support for a new MDRO guideline: Magiorakos AP, Srinivasan A *et al.* "Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance." Clinical Microbiology and Infection (2012).
* This is now the new default guideline for the `mdro()` function
* The new Verbose mode (`mdro(...., verbose = TRUE)`) returns an informative data set where the reason for MDRO determination is given for every isolate, and an list of the resistant antimicrobial agents
* Data set `antivirals`, containing all entries from the ATC J05 group with their DDDs for oral and parenteral treatment
### Changes
* Improvements to algorithm in `as.mo()`:
@ -48,13 +49,14 @@
@@ -48,13 +49,14 @@
* When running `as.rsi()` over a data set, it will now print the guideline that will be used if it is not specified by the user
* Improvements for `eucast_rules()`:
* Fix where *Stenotrophomonas maltophilia* would always become ceftazidime R (following EUCAST v3.1)
* Fix where *Leuconostoc* and *Pediococcus* would not always become glyopeptides R
* Fix where *Leuconostoc* and *Pediococcus* would not always become glycopeptides R
* non-EUCAST rules in `eucast_rules()` are now applied first and not as last anymore. This is to improve the dependency on certain antibiotics for the official EUCAST rules. Please see `?eucast_rules`.
* Fix for interpreting MIC values with `as.rsi()` where the input is `NA`
* Added "imi" and "imp" as allowed abbreviation for Imipenem (IPM)
* Fix for automatically determining columns with antibiotic results in `mdro()` and `eucast_rules()`
* Added ATC codes for ceftaroline, ceftobiprole and faropenem and fixed two typos in the `antibiotics` data set
* More robust way of determining valid MIC values
* Small changed to the `example_isolates` data set to better reflect reality
### Other
* Change dependency on `clean` to `cleaner`, as this package was renamed accordingly upon CRAN request
#' An anonymised data set containing 2,000 microbial blood culture isolates with their full antibiograms found 4 different hospitals in the Netherlands, between 2001 and 2017. This \code{data.frame} can be used to practice AMR analysis. For examples, please read \href{https://msberends.gitlab.io/AMR/articles/AMR.html}{the tutorial on our website}.
#' A data set containing 2,000 microbial isolates with their full antibiograms. The data set reflects reality and can be used to practice AMR analysis. For examples, please read \href{https://msberends.gitlab.io/AMR/articles/AMR.html}{the tutorial on our website}.
#' @format A \code{\link{data.frame}} with 2,000 observations and 49 variables:
#' \describe{
#' \item{\code{date}}{date of receipt at the laboratory}
#' \item{\code{ward_outpatient}}{logical to determine if ward is an outpatient clinic}
#' \item{\code{age}}{age of the patient}
#' \item{\code{gender}}{gender of the patient}
#' \item{\code{patient_id}}{ID of the patient, first 10 characters of an SHA hash containing irretrievable information}
#' \item{\code{patient_id}}{ID of the patient}
#' \item{\code{mo}}{ID of microorganism created with \code{\link{as.mo}}, see also \code{\link{microorganisms}}}
#' \item{\code{PEN:RIF}}{40 different antibiotics with class \code{rsi} (see \code{\link{as.rsi}}); these column names occur in \code{\link{antibiotics}} data set and can be translated with \code{\link{ab_name}}}
#' Data set to interpret MIC and disk diffusion to RSI values. Included guidelines are CLSI (2011-2019) and EUCAST (2011-2019). Use \code{\link{as.rsi}} to transform MICs or disks measurements to RSI values.
#' @format A \code{\link{data.frame}} with 11,559 observations and 9 variables:
#' @format A \code{\link{data.frame}} with 13,975 observations and 9 variables:
#' \describe{
#' \item{\code{guideline}}{Name of the guideline}
#' \item{\code{method}}{Either "MIC" or "DISK"}
#' \item{\code{site}}{Body site, e.g. "Oral" or "Respiratory"}
#' \item{\code{mo}}{Microbial ID, see \code{\link{as.mo}}}
#' \item{\code{ab}}{Antibiotic ID, see \code{\link{as.ab}}}
#' \item{\code{ref_tbl}}{Info about where the guideline rule can be found}
#' \item{\code{S_mic}}{Lowest MIC value that leads to "S"}
#' \item{\code{R_mic}}{Highest MIC value that leads to "R"}
#' \item{\code{dose_disk}}{Dose of the used disk diffusion method}
#' \item{\code{S_disk}}{Lowest number of millimeters that leads to "S"}
#' \item{\code{R_disk}}{Highest number of millimeters that leads to "R"}
#' \item{\code{disk_dose}}{Dose of the used disk diffusion method}
#' \item{\code{breakpoint_S}}{Lowest MIC value or highest number of millimeters that leads to "S"}
#' \item{\code{breakpoint_R}}{Highest MIC value or lowest number of millimeters that leads to "R"}
guideline$name<-"Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance."
guideline$author<-"Magiorakos AP, Srinivasan A, Carey RB, ..., Vatopoulos A, Weber JT, Monnet DL"
guideline$version<-"N/A"
guideline$source<-"Magiorakos et al. (2012) Clinical Microbiology and Infection 18:3. DOI: 10.1111/j.1469-0691.2011.03570.x"
guideline$source<-"Clinical Microbiology and Infection 18:3, 2012. DOI: 10.1111/j.1469-0691.2011.03570.x"
}elseif (guideline$code=="eucast"){
guideline$name<-"EUCAST Expert Rules, \"Intrinsic Resistance and Exceptional Phenotypes Tables\""
#' All antimicrobial drugs and their official names, ATC codes, ATC groups and defined daily dose (DDD) are included in this package, using the WHO Collaborating Centre for Drug Statistics Methodology.
#' This package contains \strong{all ~450 antimicrobial drugs} and their Anatomical Therapeutic Chemical (ATC) codes, ATC groups and Defined Daily Dose (DDD) from the World Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC, \url{https://www.whocc.no}) and the Pharmaceuticals Community Register of the European Commission (\url{http://ec.europa.eu/health/documents/community-register/html/atc.htm}).
#' This package contains \strong{all ~550 antibiotic, antimycotic and antiviral drugs} and their Anatomical Therapeutic Chemical (ATC) codes, ATC groups and Defined Daily Dose (DDD) from the World Health Organization Collaborating Centre for Drug Statistics Methodology (WHOCC, \url{https://www.whocc.no}) and the Pharmaceuticals Community Register of the European Commission (\url{http://ec.europa.eu/health/documents/community-register/html/atc.htm}).
#'
#' These have become the gold standard for international drug utilisation monitoring and research.
<p><strong>Note:</strong> values on this page will change with every website update since they are based on randomly created values and the page was written in <ahref="https://rmarkdown.rstudio.com/">R Markdown</a>. However, the methodology remains unchanged. This page was generated on 15 November 2019.</p>
<p><strong>Note:</strong> values on this page will change with every website update since they are based on randomly created values and the page was written in <ahref="https://rmarkdown.rstudio.com/">R Markdown</a>. However, the methodology remains unchanged. This page was generated on 18 November 2019.</p>
<p>So, we can draw at least two conclusions immediately. From a data scientists perspective, the data looks clean: only values <code>M</code> and <code>F</code>. From a researchers perspective: there are slightly more men. Nothing we didn’t already know.</p>
<p>The data is already quite clean, but we still need to transform some variables. The <code>bacteria</code> column now consists of text, and we want to add more variables based on microbial IDs later on. So, we will transform this column to valid IDs. The <code><ahref="https://dplyr.tidyverse.org/reference/mutate.html">mutate()</a></code> function of the <code>dplyr</code> package makes this really easy:</p>
<aclass="sourceLine"id="cb14-3"data-line-number="3"><spanclass="co"># Other rules by this AMR package</span></a>
<aclass="sourceLine"id="cb14-4"data-line-number="4"><spanclass="co"># Non-EUCAST: inherit amoxicillin results for unavailable ampicillin (no changes)</span></a>
<aclass="sourceLine"id="cb14-5"data-line-number="5"><spanclass="co"># Non-EUCAST: inherit ampicillin results for unavailable amoxicillin (no changes)</span></a>
<aclass="sourceLine"id="cb14-6"data-line-number="6"><spanclass="co"># Non-EUCAST: set amoxicillin/clav acid = S where ampicillin = S (3,022 values changed)</span></a>
<aclass="sourceLine"id="cb14-7"data-line-number="7"><spanclass="co"># Non-EUCAST: set ampicillin = R where amoxicillin/clav acid = R (151 values changed)</span></a>
<aclass="sourceLine"id="cb14-6"data-line-number="6"><spanclass="co"># Non-EUCAST: set amoxicillin/clav acid = S where ampicillin = S (2,986 values changed)</span></a>
<aclass="sourceLine"id="cb14-7"data-line-number="7"><spanclass="co"># Non-EUCAST: set ampicillin = R where amoxicillin/clav acid = R (176 values changed)</span></a>
<aclass="sourceLine"id="cb14-8"data-line-number="8"><spanclass="co"># Non-EUCAST: set piperacillin = R where piperacillin/tazobactam = R (no changes)</span></a>
<aclass="sourceLine"id="cb14-9"data-line-number="9"><spanclass="co"># Non-EUCAST: set piperacillin/tazobactam = S where piperacillin = S (no changes)</span></a>
<aclass="sourceLine"id="cb14-10"data-line-number="10"><spanclass="co"># Non-EUCAST: set trimethoprim = R where trimethoprim/sulfa = R (no changes)</span></a>
@ -448,14 +448,14 @@
@@ -448,14 +448,14 @@
<aclass="sourceLine"id="cb14-29"data-line-number="29"><spanclass="co"># Pasteurella multocida (no changes)</span></a>
<aclass="sourceLine"id="cb14-30"data-line-number="30"><spanclass="co"># Staphylococcus (no changes)</span></a>
<aclass="sourceLine"id="cb14-31"data-line-number="31"><spanclass="co"># Streptococcus groups A, B, C, G (no changes)</span></a>
<aclass="sourceLine"id="cb14-36"data-line-number="36"><spanclass="co"># Table 01: Intrinsic resistance in Enterobacteriaceae (1,282 values changed)</span></a>
<aclass="sourceLine"id="cb14-36"data-line-number="36"><spanclass="co"># Table 01: Intrinsic resistance in Enterobacteriaceae (1,284 values changed)</span></a>
<aclass="sourceLine"id="cb14-37"data-line-number="37"><spanclass="co"># Table 02: Intrinsic resistance in non-fermentative Gram-negative bacteria (no changes)</span></a>
<aclass="sourceLine"id="cb14-38"data-line-number="38"><spanclass="co"># Table 03: Intrinsic resistance in other Gram-negative bacteria (no changes)</span></a>
<aclass="sourceLine"id="cb14-40"data-line-number="40"><spanclass="co"># Table 08: Interpretive rules for B-lactam agents and Gram-positive cocci (no changes)</span></a>
<aclass="sourceLine"id="cb14-41"data-line-number="41"><spanclass="co"># Table 09: Interpretive rules for B-lactam agents and Gram-negative rods (no changes)</span></a>
<aclass="sourceLine"id="cb14-42"data-line-number="42"><spanclass="co"># Table 11: Interpretive rules for macrolides, lincosamides, and streptogramins (no changes)</span></a>
@ -463,15 +463,15 @@
@@ -463,15 +463,15 @@
<aclass="sourceLine"id="cb14-44"data-line-number="44"><spanclass="co"># Table 13: Interpretive rules for quinolones (no changes)</span></a>
<aclass="sourceLine"id="cb14-47"data-line-number="47"><spanclass="co"># EUCAST rules affected 6,586 out of 20,000 rows, making a total of 8,309 edits</span></a>
<aclass="sourceLine"id="cb14-47"data-line-number="47"><spanclass="co"># EUCAST rules affected 6,569 out of 20,000 rows, making a total of 8,257 edits</span></a>
<aclass="sourceLine"id="cb14-48"data-line-number="48"><spanclass="co"># => added 0 test results</span></a>
<aclass="sourceLine"id="cb14-58"data-line-number="58"><spanclass="co"># Use eucast_rules(..., verbose = TRUE) (on your original data) to get a data.frame with all specified edits instead.</span></a></code></pre></div>
@ -499,8 +499,8 @@
@@ -499,8 +499,8 @@
<aclass="sourceLine"id="cb16-3"data-line-number="3"><spanclass="co"># </span><spanclass="al">NOTE</span><spanclass="co">: Using column `bacteria` as input for `col_mo`.</span></a>
<aclass="sourceLine"id="cb16-4"data-line-number="4"><spanclass="co"># </span><spanclass="al">NOTE</span><spanclass="co">: Using column `date` as input for `col_date`.</span></a>
<aclass="sourceLine"id="cb16-5"data-line-number="5"><spanclass="co"># </span><spanclass="al">NOTE</span><spanclass="co">: Using column `patient_id` as input for `col_patient_id`.</span></a>
<aclass="sourceLine"id="cb16-6"data-line-number="6"><spanclass="co"># => Found 5,688 first isolates (28.4% of total)</span></a></code></pre></div>
<p>So only 28.4% is suitable for resistance analysis! We can now filter on it with the <code><ahref="https://dplyr.tidyverse.org/reference/filter.html">filter()</a></code> function, also from the <code>dplyr</code> package:</p>
<aclass="sourceLine"id="cb16-6"data-line-number="6"><spanclass="co"># => Found 5,699 first isolates (28.5% of total)</span></a></code></pre></div>
<p>So only 28.5% is suitable for resistance analysis! We can now filter on it with the <code><ahref="https://dplyr.tidyverse.org/reference/filter.html">filter()</a></code> function, also from the <code>dplyr</code> package:</p>
<p>For future use, the above two syntaxes can be shortened with the <code><ahref="../reference/first_isolate.html">filter_first_isolate()</a></code> function:</p>
<p>We made a slight twist to the CLSI algorithm, to take into account the antimicrobial susceptibility profile. Have a look at all isolates of patient I9, sorted on date:</p>
<p>We made a slight twist to the CLSI algorithm, to take into account the antimicrobial susceptibility profile. Have a look at all isolates of patient X7, sorted on date:</p>
<tableclass="table">
<thead><trclass="header">
<thalign="center">isolate</th>
@ -526,19 +526,19 @@
@@ -526,19 +526,19 @@
<tbody>
<trclass="odd">
<tdalign="center">1</td>
<tdalign="center">2010-02-08</td>
<tdalign="center">I9</td>
<tdalign="center">2010-03-18</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="even">
<tdalign="center">2</td>
<tdalign="center">2010-03-05</td>
<tdalign="center">I9</td>
<tdalign="center">2010-04-28</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
@ -548,30 +548,30 @@
@@ -548,30 +548,30 @@
</tr>
<trclass="odd">
<tdalign="center">3</td>
<tdalign="center">2010-05-14</td>
<tdalign="center">I9</td>
<tdalign="center">2010-06-26</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">FALSE</td>
</tr>
<trclass="even">
<tdalign="center">4</td>
<tdalign="center">2010-12-10</td>
<tdalign="center">I9</td>
<tdalign="center">2010-08-06</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
</tr>
<trclass="odd">
<tdalign="center">5</td>
<tdalign="center">2010-12-17</td>
<tdalign="center">I9</td>
<tdalign="center">2010-08-31</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
@ -581,19 +581,19 @@
@@ -581,19 +581,19 @@
</tr>
<trclass="even">
<tdalign="center">6</td>
<tdalign="center">2011-04-18</td>
<tdalign="center">I9</td>
<tdalign="center">2010-10-15</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">TRUE</td>
<tdalign="center">FALSE</td>
</tr>
<trclass="odd">
<tdalign="center">7</td>
<tdalign="center">2011-04-25</td>
<tdalign="center">I9</td>
<tdalign="center">2010-11-19</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
@ -603,8 +603,8 @@
@@ -603,8 +603,8 @@
</tr>
<trclass="even">
<tdalign="center">8</td>
<tdalign="center">2011-06-06</td>
<tdalign="center">I9</td>
<tdalign="center">2011-01-20</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
@ -614,23 +614,23 @@
@@ -614,23 +614,23 @@
</tr>
<trclass="odd">
<tdalign="center">9</td>
<tdalign="center">2011-07-14</td>
<tdalign="center">I9</td>
<tdalign="center">2011-04-10</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="even">
<tdalign="center">10</td>
<tdalign="center">2011-07-31</td>
<tdalign="center">I9</td>
<tdalign="center">2011-04-12</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
</tr>
@ -647,7 +647,7 @@
@@ -647,7 +647,7 @@
<aclass="sourceLine"id="cb19-7"data-line-number="7"><spanclass="co"># </span><spanclass="al">NOTE</span><spanclass="co">: Using column `patient_id` as input for `col_patient_id`.</span></a>
<aclass="sourceLine"id="cb19-8"data-line-number="8"><spanclass="co"># </span><spanclass="al">NOTE</span><spanclass="co">: Using column `keyab` as input for `col_keyantibiotics`. Use col_keyantibiotics = FALSE to prevent this.</span></a>
<aclass="sourceLine"id="cb19-9"data-line-number="9"><spanclass="co"># [Criterion] Inclusion based on key antibiotics, ignoring I</span></a>
<aclass="sourceLine"id="cb19-10"data-line-number="10"><spanclass="co"># => Found 15,051 first weighted isolates (75.3% of total)</span></a></code></pre></div>
<aclass="sourceLine"id="cb19-10"data-line-number="10"><spanclass="co"># => Found 15,085 first weighted isolates (75.4% of total)</span></a></code></pre></div>
<tableclass="table">
<thead><trclass="header">
<thalign="center">isolate</th>
@ -664,92 +664,92 @@
@@ -664,92 +664,92 @@
<tbody>
<trclass="odd">
<tdalign="center">1</td>
<tdalign="center">2010-02-08</td>
<tdalign="center">I9</td>
<tdalign="center">2010-03-18</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">TRUE</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="even">
<tdalign="center">2</td>
<tdalign="center">2010-03-05</td>
<tdalign="center">I9</td>
<tdalign="center">2010-04-28</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
<tdalign="center">FALSE</td>
</tr>
<trclass="odd">
<tdalign="center">3</td>
<tdalign="center">2010-05-14</td>
<tdalign="center">I9</td>
<tdalign="center">2010-06-26</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="even">
<tdalign="center">4</td>
<tdalign="center">2010-12-10</td>
<tdalign="center">I9</td>
<tdalign="center">2010-08-06</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="odd">
<tdalign="center">5</td>
<tdalign="center">2010-12-17</td>
<tdalign="center">I9</td>
<tdalign="center">2010-08-31</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
<tdalign="center">FALSE</td>
</tr>
<trclass="even">
<tdalign="center">6</td>
<tdalign="center">2011-04-18</td>
<tdalign="center">I9</td>
<tdalign="center">2010-10-15</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">TRUE</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="odd">
<tdalign="center">7</td>
<tdalign="center">2011-04-25</td>
<tdalign="center">I9</td>
<tdalign="center">2010-11-19</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
<tdalign="center">FALSE</td>
</tr>
<trclass="even">
<tdalign="center">8</td>
<tdalign="center">2011-06-06</td>
<tdalign="center">I9</td>
<tdalign="center">2011-01-20</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
@ -760,35 +760,35 @@
@@ -760,35 +760,35 @@
</tr>
<trclass="odd">
<tdalign="center">9</td>
<tdalign="center">2011-07-14</td>
<tdalign="center">I9</td>
<tdalign="center">2011-04-10</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
<tdalign="center">TRUE</td>
</tr>
<trclass="even">
<tdalign="center">10</td>
<tdalign="center">2011-07-31</td>
<tdalign="center">I9</td>
<tdalign="center">2011-04-12</td>
<tdalign="center">X7</td>
<tdalign="center">B_ESCHR_COLI</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">R</td>
<tdalign="center">S</td>
<tdalign="center">S</td>
<tdalign="center">FALSE</td>
<tdalign="center">TRUE</td>
<tdalign="center">FALSE</td>
</tr>
</tbody>
</table>
<p>Instead of 2, now 9 isolates are flagged. In total, 75.3% of all isolates are marked ‘first weighted’ - 46.8% more than when using the CLSI guideline. In real life, this novel algorithm will yield 5-10% more isolates than the classic CLSI guideline.</p>
<p>Instead of 2, now 6 isolates are flagged. In total, 75.4% of all isolates are marked ‘first weighted’ - 46.9% more than when using the CLSI guideline. In real life, this novel algorithm will yield 5-10% more isolates than the classic CLSI guideline.</p>
<p>As with <code><ahref="../reference/first_isolate.html">filter_first_isolate()</a></code>, there’s a shortcut for this new algorithm too:</p>